Senin, 26 April 2010

Pengertian Graph

Definisi
Suatu graph didefinisikan oleh himpunan verteks dan himpunan sisi (edge). Verteks menyatakan entitas-entitas data dan sisi menyatakan keterhubungan antara verteks. Biasanya untuk suatu graph G digunakan notasi matematis
G = (V, E)

V adalah himpunan verteks dan E himpunan sisi yang terdefinisi antara pasangan-pasangan verteks. Sebuah sisi antara verteks x dan y ditulis {x, y}.

Suatu graph H = (V1, E1) disebut subgraph dari graph G jika V1 adalah himpunan bagian dari V dan E1 himpunan bagian dari E.
Digraph & Undigraph

Graph Berarah (directed graph atau digraph): jika sisi-sisi pada graph, misalnya {x, y} hanya berlaku pada arah-arah tertentu saja, yaitu dari x ke y tapi tidak dari y ke x; verteks x disebut origin dan vertex y disebut terminus dari sisi tersebut. Secara grafis maka penggambaran arah sisi-sisi digraph dinyatakan dengan anak panah yang mengarah ke verteks terminus, secara notasional sisi graph berarah ditulis sebagai vektor dengan (x, y).
graph di samping ini adalah suatu contoh Digraph G = {V, E}
dengan V = {A, B, C, D, E, F, G, H, I,J, K, L, M}
dan E = {( (A,B),(A,C), (A,D), (A,F), (B,C), (B,H), (C,E), (C,G), (C,H), (C,I), (D,E), (D,F), (D,G), (D,K), (D,L), (E,F), (G,I), (G,K), (H,I), (I,J), (I,M), (J,K), (J,M), (L,K), (L,M)}.

Graph Tak Berarah (undirected graph atau undigraph): setiap sisi {x, y} berlaku pada kedua arah: baik x ke y maupun y ke x. Secara grafis sisi pada undigraph tidak memiliki mata panah dan secara notasional menggunakan kurung kurawal.
graph di samping ini adalah suatu contoh Undigraph G = {V, E}
dengan V = {A, B, C, D, E, F, G, H, I,J, K, L, M}
dan E = { {A,B},{A,C}, {A,D}, {A,F}, {B,C}, {B,H}, {C,E}, {C,G}, {C,H}, {C,I}, {D,E}, {D,F}, {D,G}, {D,K}, {D,L}, {E,F}, {G,I}, {G,K}, {H,I}, {I,J}, {I,M}, {J,K}, {J,M}, {L,K}, {L,M}}.

Dalam masalah-masalah graph undigraph bisa dipandang sebagai suatu digraph dengan mengganti setiap sisi tak berarahnya dengan dua sisi untuk masing-masing arah yang berlawanan.
Undigraph di atas tersebut bisa dipandang sebagai Digraph G = {V, E}
dengan V = {A, B, C, D, E, F, G, H, I,J, K, L, M}
dan E = { (A,B),(A,C), (A,D), (A,F), (B,C), (B,H), (C,E), (C,G), (C,H), (C,I), (D,E), (D,F), (D,G), (D,K), (D,L), (E,F), (G,I), (G,K), (H,I), (I,J), (I,M), (J,K), (J,M), (L,K), (L,M), (B,A), (C,A), (D,A), (F,A), (C,B), (H,B), (E,C), (G,C), (H,C), (I,C), (E,D), (F,D), (G,D), (K,D), (L,D), (F,E), (I,G), (K,G), (I,H), (J,I), (M,I), (K,J), (M,J), (K,L), (M,L)}

Selain itu, berdasarkan definisi ini maka struktur data linear maupun hirarkis adalah juga graph. Node-node pada struktur linear atupun hirarkis adalah verteks-verteks dalam pengertian graph dengan sisi-sisinya menyusun node-node tersebut secara linear atau hirarkis. Sementara kita telah ketahui bahwa struktur data linear adalah juga tree dengan pencabangan pada setiap node hanya satu atau tidak ada. Linear 1-way linked list adalah digraph, linear 2-way linked list bisa disebut undigraph.
Aspek Algoritmis

Walau secara konseptual struktur linear adalah subset dari tree dan demikian pula tree adalah subset dari graph, dalam aplikasinya perlu dibedakan cara penanganan struktur-struktur tersebut untuk mencapai efisiensi algoritmis. Algoritma-algoritma untuk graph secara umum terlalu mahal apabila digunakan pada struktur hirarkis (tree), apalagi pada struktur linear. Jadi apabila masalah yang dihadapi pada dasarnya hanya merupakan masalah dengan struktur data hirarkis saja maka cukup lah kita menggunakan representasi dan algoritma-algoritma tree.
Konektivitas pada Undigraph

* Adjacency: Dua verteks x dan y yang berlainan disebut berhubungan langsung (adjacent) jika terdapat sisi {x, y} dalam E.
* Path: Sederetan verteks yang mana setiap verteks adjacent dengan verteks yang tepat berada disebelahnya.
* Panjang dari path: jumlah sisi yang dilalui path.
* Siklus: suatu path dengan panjang lebih dari satu yang dimulai dan berakhir pada suatu verteks yang sama.
* Siklus sederhana: dalan undigraph, siklus yang terbentuk pada tiga atau lebih verteks-verteks yang berlainan yang mana tidak ada verteks yang dikunjungi lebih dari satu kali kecuali verteks awal/akhir.
* Dua verteks x dan y yang berbeda dalam suatu undigraph disebut berkoneksi (connected) apabila jika terdapat path yang menghubungkannya.
* Himpunan bagian verteks S disebut terkoneksi (connected) apabila dari setiap verteks x dalam S terdapat path ke setiap verteks y (y bukan x) dalam S.
* Suatu komponen terkoneksi (connected components) adalah subgraph (bagian dari graph) yang berisikan satu himpunan bagian verteks yang berkoneksi.
* Suatu undigraph dapat terbagi atas beberapa komponen yang terkoneksi; jika terdapat lebih dari satu komponen terkoneksi maka tidak terdapat path dari suatu verteks dalam satu komponen verteks di komponen lainnya.
* Pohon bebas (free tree): suatu undigraph yang hanya terdapat satu komponen terkoneksi serta tidak memiliki siklus sederhana.

Konektivitas pada Digraph

Terminologi di atas berlaku juga pada Digraph kecuali dalam digraph harus dikaitkan dengan arah tertentu karena pada arah yang sebaliknya belum tentu terdefinisi.

* Adjacency ke / dari: Jika terdapat sisi (x,y) maka dalam digraph dikatakan bahwa x "adjacent ke" y atau y "adjacent dari" x. Demikian pula jika terdapat path dari x ke y maka belum tentu ada path dari y ke x Jadi dalam digraph keterkoneksian didefinisikan lebih lanjut lagi sebagai berikut.
* Terkoneksi dengan kuat: Himpunan bagian verteks S dikatakan terkoneksi dengan kuat (strongly connected) bila setiap pasangan verteks berbeda x dan y dalam S, x berkoneksi dengan y dan y berkoneksi dengan x (dpl., ada path dari x ke y dan sebaliknya dari y ke x).
* Terkoneksi dengan Lemah: Himpunan bagian verteks S dikatakan terkoneksi dengan lemah (weakly connected) bila setiap pasangan verteks berbeda x dan y dalam S, salah satu: x berkoneksi dengan y (atau y berkoneksi dengan x) dan tidak kebalikan arahnya (dpl., hanya terdefinisi satu path: dari x ke y atau sebaliknya dari y ke x).


sumber: http://www.cs.ui.ac.id/WebKuliah/IKI10100/1998/handout/handout19.html

Tidak ada komentar:

Poskan Komentar